Design Thinking & UI/UX Specialization
This 25-day course introduces participants to Design Thinking methodology and UI/UX design principles. It covers the five stages of Design Thinking, user-centered approaches, and key design concepts like wireframes, prototypes, and user flows. Students will gain hands-on experience with design tools such as Figma and Adobe XD, and learn research techniques, usability testing, and prototyping. Advanced topics like microinteractions, accessibility, and building design systems are explored. The course culminates in real-world case studies and preparing for design projects in large organizations (MNCs).
- Bestseller
Mentor Sync Program from Navikshaa
- Upcoming batch 1st Feb
- English

Design Thinking & UI/UX Specialization
A course by Priya
This Program introduces participants to Design Thinking methodology and UI/UX design principles and …
- 1,123
- 99%
₹17,990
What you will learn
- Master the Design Thinking process to solve real-world challenges.
- Understand the importance of empathy and user-centered design.
- Learn the art of crafting impactful problem statements.
- Dive into UI/UX fundamentals and their practical applications.
- Create professional wireframes and prototypes effortlessly.
- Conduct effective user research with interviews and surveys.
- Develop user personas and journey maps for deeper insights.
- Explore visual design principles for stunning interfaces.
- Design responsive layouts for a seamless multi-device experience.
- Unlock the power of microinteractions and animations.
- Build high-fidelity prototypes that tell engaging stories.
- Discover the essentials of usability testing and iterative design.
- Design for accessibility to cater to all user needs.
- Learn to collaborate efficiently with developers for perfect hand-offs.
- Harness analytics tools to track and improve user behavior.
- Align UX strategies with impactful business goals.
- Get hands-on with cutting-edge tools like Figma and Adobe XD.
- Create and implement design systems for consistent designs.
- Solve complex UX challenges inspired by real-world case studies.
Â
The course includes :
- 45+ hours live Sessions
- 25 Quizes
- 4 Assessments
- Query Resolution
- 24/7 Professional Support
- No Resume Building Sessions
- No Mock Interviews
- Updated Recorded sessions
- MNC Simulated Project
- Training Completion Certificate
- Letter of Recommendation
- Wipro Credential Certificate
- No Placement Assistance
Course Content
- 45+ Hours Live Sessions
- 29 Quizzes
- 4 Assessments
Day 1: Introduction to Artificial Intelligence
- Overview of AI, its history, and evolution
- Types of AI: Narrow AI vs. General AI
- Applications of AI in business and technology
- Overview of AI, its history, and evolution
- Quiz
Day 2: Core Concepts of Machine Learning
- Introduction to machine learning
- ML vs. AI vs. Deep Learning
- Real-world examples of ML applications
- Quiz
Day 3: Machine Learning Basics and Tools
- Overview of common machine learning libraries: Scikit-learn, TensorFlow, Keras
- Data handling with Pandas and NumPy
- Basic data preprocessing techniques
- Quiz
Day 4: Supervised Learning – Regression Techniques
- Linear regression and multiple linear regression
- Hands-on with real-world datasets (e.g., sales prediction)
- Model evaluation: Mean Squared Error, R²
- Quiz
Day 5: Supervised Learning – Classification Algorithms
- Introduction to classification: Logistic Regression, K-Nearest Neighbors (KNN), Decision Trees
- Hands-on with classification tasks (e.g., binary classification)
- Quiz
Assessment 1
- Assessment 1
Day 6: Unsupervised Learning – Clustering
- Introduction to unsupervised learning and clustering
- K-Means Clustering, DBSCAN, Hierarchical Clustering
- Real-world applications: Customer segmentation
- Quiz
Day 7: Model Evaluation and Hyperparameter Tuning
- Evaluating machine learning models
- Cross-validation and overfitting/underfitting
- Hyperparameter tuning using Grid Search and Random Search
- Quiz
Day 8: Support Vector Machines (SVM)
- Introduction to Support Vector Machines
- SVM for classification and regression
- Real-world applications: Text classification, image classification
- Quiz
Day 9: Ensemble Learning Techniques
- Overview of ensemble methods: Random Forest, Bagging
- Hands-on with ensemble learning for improving model accuracy
- Quiz
Day 10: Advanced Machine Learning – Dimensionality Reduction
- Principal Component Analysis (PCA)
- Feature selection and reduction
- Applications: Reducing dimensionality in large datasets (e.g., image or gene data)
- Quiz
Assessment 2
- Assessment 1
Day 11: Introduction to Deep Learning
- What is deep learning? Differences from traditional ML
- Neural networks: Architecture and learning process
- Activation functions, loss functions, and backpropagation
- Quiz
Day 12: Convolutional Neural Networks (CNN)
- Introduction to CNNs and their architecture
- Applications in image classification, object detection
- Hands-on project: Image recognition using CNN
- Quiz
Day 13: Recurrent Neural Networks (RNN)
- Introduction to RNNs and LSTMs (Long Short-Term Memory)
- Applications in time series forecasting, speech recognition
- Hands-on project: Sentiment analysis with RNN
- Quiz
Day 14: Deep Learning Model Evaluation
- Evaluating deep learning models: Overfitting, underfitting, and tuning
- Hyperparameter optimization for deep learning models
- Advanced techniques: Dropout, Batch Normalization, Early Stopping
- Quiz
Day 15: Transfer Learning and Pre-trained Models
- Understanding transfer learning and fine-tuning pre-trained models
- Practical applications using models like ResNet, Inception, and VGG16
- Hands-on: Transfer learning for image classification
- Quiz
Assessment 3
- Assessment 3
Day 16: Natural Language Processing (NLP) Fundamentals
- Introduction to NLP and text preprocessing
- Tokenization, stemming, lemmatization, stop words removal
- Hands-on with Python libraries: NLTK, spaCy
- Quiz
Day 17: Text Classification and Sentiment Analysis
- Introduction to text classification techniques
- Sentiment analysis using deep learning (e.g., LSTM, BERT)
- Hands-on with real-world datasets (social media posts, reviews)
- Quiz
Day 18: Sequence Modeling with RNN and LSTM
- Advanced sequence modeling using RNN and LSTM
- Applications: Time series prediction, stock market forecasting, NLP tasks
- Hands-on project: Stock price prediction with LSTM
- Quiz
Day 19: Reinforcement Learning Basics
- Introduction to reinforcement learning (RL)
- Key concepts: Agents, environments, rewards, policies
- Hands-on with simple RL algorithms (Q-learning)
- Quiz
Day 20: Advanced Deep Learning: GANs (Generative Adversarial Networks)
- Introduction to GANs and how they work
- Applications: Image generation, style transfer, and data augmentation
- Hands-on with GAN-based projects
- Quiz
Assessment 4
- Assessment 4
Day 21: AI Model Deployment
- Introduction to model deployment concepts
- Packaging models with Docker, deploying on cloud platforms (AWS, GCP, Azure)
- API integration for model serving
- Quiz
Day 22: AI for Business Applications
- AI in business: Automation, recommendation systems, and predictive analytics
- Hands-on: Building a recommendation engine using collaborative filtering
- Applications in e-commerce, healthcare, and finance
- Quiz
Day 23: AI in Healthcare
- AI applications in healthcare: Diagnostics, personalized treatment, medical imaging
- Case studies: AI in radiology, drug discovery, and patient monitoring
- Hands-on: Building a simple AI model for medical diagnosis
- Quiz
Day 24: AI in Finance and Risk Management
- AI for fraud detection, credit scoring, and algorithmic trading
- Case studies: AI in financial institutions
- Hands-on: Building a fraud detection model
- Quiz
Day 25: AI in Manufacturing and Automation
- AI for predictive maintenance, robotics, supply chain optimization
- Case studies: Smart factories, automation solutions
- Hands-on: Building an AI-based predictive maintenance system
- Quiz
Day 26: Introduction to AI on the Cloud
- Cloud AI services: AWS, Google Cloud AI, Azure Machine Learning
- Hands-on: Using Google Cloud AI for model deployment
- Benefits and challenges of cloud-based AI solutions
- Quiz
Day 27: AI for Edge Computing
- Introduction to edge AI and its importance for real-time processing
- Case studies: AI in IoT devices, autonomous vehicles
- Hands-on: Deploying a model on a Raspberry Pi
- Quiz
Day 28: AI Ethics and Responsible AI
- Ethical concerns in AI: Bias, fairness, and transparency
- AI governance and regulation in MNCs
- Building ethical AI systems for business applications
- Quiz
Day 29: Capstone Project: Building an Enterprise AI Solution
- Work on a real-world AI project
- Apply concepts learned in the course to solve a business problem
- Quiz